default eye-catch image.

微分フィルタだけで時系列データの過渡応答終了を検知したい

ある値の近傍を取る状態から別の値の近傍を取る状態へ遷移する時系列データについて、 どちらの状態でもない過渡状態を経て状態が遷移するみたい。 今回知りたいのは理論ではなく、定常状態に遷移したことをいかにして検知するかという物理。 まぁいかようにでも検知できなくもないけれども、非定常状態の継続時間は不明であるという。 なるべく遅れなしに定常状態への遷移を検知したい。 ARモデルとかMAモデルとかの出番ではない。 DeepLearningとかやってる暇はないw 過去の微小時間内に含まれるデータだけから次が定常状態なのかを検知したい。 前状態と後状態のベースラインがどんな値であっても、 それを考慮することなしに過渡応答の後にくる定常状態の先頭を検知できる、という特徴がほしい。 移動平均だとベースラインがケースごとに変わるので扱いづらい。 微分であればベースラインがゼロに揃うのが良いな、と思った。 結局、今度はゼロへの収束を検知する問題に差し代わるだけだけども、 前ラインと後ラインの2つも見ないでも、確実に楽にはなっている。 微分するとノイズが増えるが...。 微分値が上下の閾値を超えたラインから先、 ゼロ収束の判定条件が一定時間継続した最初のデータポイントがソコ。 これは過渡状態の終了検知なだけだから、それとRawデータの変化をみる。

default eye-catch image.

やってみた Markov chain Monte Carlo methods, MCMC , gibbs sampling

[mathjax] マルコフ連鎖モンテカルロ法。2変量正規分布からGibbs Samplingする方法を考えてみました。 式を流してもよくわからないので、行間ゼロで理解できるまで細切れにして書いてみます。 Gibbs Sampling 無茶苦茶一般的に書かれている書籍だと以下みたいになっている。 ステップごとに(theta=(theta_1,theta_2,cdots,theta_n))の各要素を、 その要素以外の要素の条件付き確率でランダムに発生させる。 begin{eqnarray} theta^0 &=& (theta_1^0,theta_2^0,cdots,theta_n^0) \\ theta_i^{t+1} &sim& p(theta_i|theta_1^{t+1},cdots,theta_{i-1}^{t+1},theta_{i+1}^t,cdots,theta_n^t) end{eqnarray} 2次元空間であれば、ある点を決める際に、 片方の変数(theta_1)を固定して条件付き確率(P(theta_2|theta_1))を最大にするパラメタ(hat{theta_2})を決める。 その時点で((theta_1,hat{theta_2}))が決まる。 次は変数(hat{theta_2})を固定して条件付き確率(P(theta_1|hat{theta_2}))を最大にするパラメタ(hat{theta_1})を決める。 2次元正規分布であれば、片方の確率変数を固定したときの条件付き確率が1変数の正規分布になるから、 これがすごくやりやすい。 Gibbs Samplingは、このように条件付き確率を計算できる必要がある。 2変量正規分布の条件付き確率 2変量正規分布の片方の確率変数を固定すると1変数の正規分布が出てきます。 山の輪切りにして出てきた正規分布の母数を調べたいのですが、導出が無茶苦茶大変そうです。 出てきた正規分布の母数について式変形すると出てくるようです。こちらを参考にさせて頂きました。 この関係式を利用してひたすら式変形していきます。 begin{eqnarray} f(x|y) &=& frac{f(x,y)}{f(x)} end{eqnarray} 今、確率変数(y=y\')を固定し確率変数(x)の正規分布を考えます。 2変量正規分布の分散共分散行列が(sum)であるとします。 begin{eqnarray} sum &=& begin{pmatrix} sigma_{xx} & sigma_{xy} \\ sigma_{yx} & sigma_{yy} end{pmatrix} end{eqnarray} 出てくる正規分布の平均は以下となります。 確率変数が(x)なのに固定した(y)が出てくるのがポイント。 begin{eqnarray} mu\' = bar{x} + frac{sigma_{xy}}{sigma_{yy}} (y\'-bar{y}) end{eqnarray} また、出てくる正規分布の分散は以下となります。 begin{eqnarray} sigma\'^2 &=& sigma_{xx} - frac{sigma_{xy}}{sigma_{yy}} sigma_{yx} end{eqnarray} Python実装例 実際にPythonコードにしてみた図です。2変量正規分布の条件付き確率さえわかってしまえば あとはコードに落とすだけです。 import numpy as np import matplotlib.pyplot as plt import scipy.stats as stats n_dim = 2 def gibbs_sampling(mu, sigma, sample_size): samples = [] start = [0, 0] samples.append(start) search_dim = 0 for i in range(sample_size): search_dim = 0 if search_dim == n_dim-1 else search_dim + 1 prev_sample = samples[-1][:] s11 = sigma[search_dim][search_dim] s12 = sigma[search_dim][search_dim - 1] s21 = sigma[search_dim -1 ][search_dim] s22 = sigma[search_dim - 1][search_dim - 1] mu_x = mu[search_dim] mu_y = mu[search_dim-1] _y = prev_sample[search_dim - 1] new_mean = mu_x + s12/float(s22) * (_y - mu_y) new_sigma = s11 - s12/float(s22) * s21 sample_x = np.random.normal(loc=new_mean, scale=np.power(new_sigma, .5), size=1) prev_sample[search_dim] = sample_x[0] samples.append(prev_sample) return np.array(samples) nu = np.ones(2) covariance = np.array([[0.5, 0.5], [0.5, 3]]) samples = gibbs_sampling(nu, covariance, 1000) fig, ax1 = plt.subplots(figsize=(6, 6)) ax1.scatter(sample[:, 0], sample[:, 1], marker=\"o\", facecolor=\"none\", alpha=1., s=30., edgecolor=\"C0\", label=\"Samples\" ) 実行結果