-
多次元正規分布に従うデータを生成する
2019/07/10 -NumPy/Pandas, クラスタリング
日々の学びそろそろ適当なデータを見つけてきて手法を試すのとは別に、 自力でデータを作って試してみたいと思い、NumPyを使った生成法を調べてみた。 一口に乱数といっても、正規分布に従う標本の生成のこと。 多次元 …
-
sklearnに頼らずRidge回帰を自力で書いてみて正則化項の影響を考えてみるテスト
2019/06/05 -NumPy/Pandas, Python, 回帰
はじめての機械学習, 日々の学びタイトルの通り。Losso回帰と違って損失関数を偏微分するだけで出来そうなのでやってみる。 Ridge回帰は線形回帰の1種だけれども、損失関数として最小二乗法をそのまま使わず、 \(L_2\)ノルムの …
-
NumPy uniqe, File I/O
2019/06/04 -NumPy/Pandas, Python
集合関数 集合関数。ndarrayから重複を取り除きsortした結果を返す。 2dであってもその中から要素を抜き出して1dにする。
12345hoges = np.array(["hoge","fuga","hoge","fuga"])print(np.unique(hoges)) # ['fuga' 'hoge']fugas = np.array([["hoge","fuga","hoge","fuga"],["hoge2","fuga2","hoge2","fuga2"]])print(np.unique(fugas)) # ['fuga' 'fuga2' 'hoge' 'hoge2']フ …
-
線形サポートベクトル分類器で画像認識するテスト
2019/06/03 -NumPy/Pandas, Python
はじめての機械学習, 日々の学び線形サポートベクトル分類器で画像認識する流れを理解したので、 定着させるために記事にしてみます。 当然、モデルの数学的な理解がないとモデルを解釈することは不可能だし、 正しいハイパーパラメータを設定す …
-
NumPy vector operations, universal functions, matplotlib, 3項演算, 次元削減
2019/06/02 -NumPy/Pandas, Python
やりなおしプログラマuniversal functions ndarrayの全ての要素に対して基本的な計算を実行する。 以下オペランドが1つの単項universal functions。 abs,sqrt,square, …
-
NumPy ndarray assignment, vector operation, indexing, slicing, bool indexing, transposition
2019/06/01 -NumPy/Pandas, Python
雑な学び大規模高速計算を前提にC言語との接続を前提にしていて、配列処理に寄せることになる。 ndarrayで確保するメモリはPythonとは別(プロセス?)で確保される。 一通り流してみる。 shape()で …