「はじめての機械学習」 一覧

ロジスティック回帰

参考書籍を読んでいく. 今回はロジスティック回帰. 未知のサンプルのクラスの所属確率を見積もることができる, という重要なことが書かれている. また重みの学習は勾配降下法のフレームワークの中で統一され …

機械学習の分類問題と損失関数の最小化の話

参考にした書籍でこの順序で誘導されていて理解しやすかったです. パーセプトロンによる一番簡単な教師あり学習を理解する ADALINEにより学習を凸で連続なコスト関数の最小化問題として捉える パーセプト …

6個のデータポイント近隣に発生させたデータ達を6-meansでクラスタ分割できるか

multivariate_normalを使って6個のデータポイント近隣にデータ達を発生させる。 薄くクラスタを見つけられそうだけれど境界は曖昧で大分被っているという状況。 そんなデータ達に6-mean …

sklearnに頼らずRidge回帰を自力で書いてみて正則化項の影響を考えてみるテスト

タイトルの通り。Losso回帰と違って損失関数を偏微分するだけで出来そうなのでやってみる。 Ridge回帰は線形回帰の1種だけれども、損失関数として最小二乗法をそのまま使わず、 \(L_2\)ノルムの …

線形サポートベクトル分類器で画像認識するテスト

線形サポートベクトル分類器で画像認識する流れを理解したので、 定着させるために記事にしてみます。 当然、モデルの数学的な理解がないとモデルを解釈することは不可能だし、 正しいハイパーパラメータを設定す …

NP困難な分類問題を代理損失の最小化に帰着させる話

機械学習の分類問題の中心にある決定境界の決定方法について かなり要領を得た説明を聞いて理解が2段階くらい先に進んだのでまとめてみます。 データが与えられただけの状態から決定境界を決める問題はNP困難で …

回帰直線の当てはまりの指標

前の記事で線形単回帰において訓練データから回帰係数を求める方法を書いてみた。 標本平均を使って母平均を推測する話とリンクさせることで、 回帰係数の95%信頼区間を求めることができた。 回帰係数\(\h …

単回帰曲線における回帰係数の精度(95%信頼区間)

線形単回帰で推定する回帰係数の精度を評価する方法を読んだのでまとめてみる。 当然、真の直線はわからないのだけれども、真の直線があると仮定した上で 推定した回帰係数との関係を考えることで、回帰係数の精度 …

損失関数の評価,バイアス-バリアンスと過学習のトレードオフ

損失関数をバイアス項、バリアンス項、削減不能誤差の和に分解できることと、 損失は削減不能誤差より下回らないこと、バイアス項、バアリアンス項のトレードオフが起こること、 を読んだ。過学習っていうのはこう …

損失関数

おっさんが入門した軌跡シリーズです。損失関数に関して学んだことをメモしておきます。 入力値\(x\)、正解\(t\)からなる訓練データ\(T=(x,t)\)が大量に与えられたときに、 \(f(x,w) …

Copyright© ikuty.com , 2024 AllRights Reserved Powered by AFFINGER4.