[mathjax]
球面集中現象を理解するために記憶にないことが多すぎるので
理解に必要そうなことを少しずつ復習していきます。
まず極座標の直行座標変換。極座標を使って球の体積を求めてみます。
次の記事で球の体積を求める時に使う微小体積がヤコビアンになることを確認します。
極座標の直行座標変換
2次元のとき、極座標((r),(phi)) を直行座標で表すと、
begin{eqnarray}
x &=& r cos(phi) \\
y &=& r sin(phi)
end{eqnarray}
3次元のとき、極座標((r),(phi_1),(phi_2))を直行座標で表すと、
begin{eqnarray}
x &=& r cos(phi_1) \\
y &=& r sin(phi_1) cos(phi_2) \\
z &=& r sin(phi_1) sin(phi_2)
end{eqnarray}
ここまではイメージできるのだけれども、(N)に飛ばしたときにどうなるのか。
N次元のとき、極座標((r),(phi_1),(phi_2),(cdots),(phi_{N-1}))を直行座標で表すと
以下のようになるらしい。
begin{eqnarray}
x_1 &=& r cos(phi_1) \\
x_2 &=& r sin(phi_1) cos(phi_2) \\
x_3 &=& r sin(phi_1) sin(phi_2) cos(phi_3) \\
vdots \\
x_{N-1} &=& r sin (phi_1) cdots sin(phi_{N-2}) cos(phi_{N-1}) \\
x_{N} &=& r sin (phi_1) cdots sin(phi_{N-2}) sin(phi_{N-1})
end{eqnarray}
この後使わないけれど、逆変換は以下の通りになるらしい。
begin{eqnarray}
r &=& sqrt{x_1^2 + cdots + x_{N-1}^2 + x_N^2} \\
phi_1 &=& arccosfrac{x_1}{sqrt{x_1^2 + cdots + x_{N-1}^2 + x_N^2}} \\
phi_2 &=& arccosfrac{x_2}{sqrt{x_2^2 + cdots + x_{N-1}^2 + x_N^2}} \\
vdots \\
phi_{N-2} &=& arccos frac{x_{N-2}}{sqrt{x_{N-2}^2 + x_{N-1}^2 + x_N^2}} \\
phi_{N-1} &=& begin{cases}
arccos frac{x_{N-1}}{sqrt{x_{N-1}^2+X_N^2}} & X_N ge 0 \\
-arccos frac{x_{N-1}}{sqrt{x_{N-1}^2+X_N^2}} & X_N lt 0
end{cases}
end{eqnarray}
3次元極座標系における体積計算の例
極座標((r),(phi_1),(phi_2))において(r)を微小量(Delta r)だけ増やす。
(2pi r)は半径を(r)とする円の直径だということを考慮すると、
(phi_1)から微小角(Delta phi_1)増やしたときの(r Delta phi_1)は円弧の一部。
(Delta phi_1)を限りなく小さくすると(r Delta phi_1)は直線と考えられる。
(2pi rsin(phi_1) )が半径を(rsin(phi_1))とする円の直径と考えると、
(phi_2)から微小角(Delta phi_2)増やしたときの(r sin(phi_1) Delta phi_2)は円弧の一部。
(Delta phi_2)を限りなく小さくすると(r sin(phi_1) Delta phi_2)は直線と考えられる。
(Delta r, Delta phi_1, Delta phi_2)が限りなくゼロに近くときに
上記のそれぞれの直線を辺とする直方体ができる。その体積を(dV)とすると、
begin{eqnarray}
dV &=& Delta r cdot r Delta phi_1 cdot r sin(phi_1) Delta phi_2 \\
&=& r^2 sin(phi_1) Delta r Delta phi_1 Delta phi_2
end{eqnarray}
直交座標(x,y,z)の位置を(U(x,y,z))とする。
直交座標系における球の体積はざっくり以下で表せる。
begin{eqnarray}
int U(x,y,z) dV
end{eqnarray}
直行座標の極座標変換は前述の通り以下。この座標を(U(r,phi_1,phi_2))とする。
begin{eqnarray}
x &=& r cos(phi_1) \\
y &=& r sin(phi_1) cos(phi_2) \\
z &=& r sin(phi_1) sin(phi_2)
end{eqnarray}
極座標系において以下だから、
begin{eqnarray}
0 le r le 1 \\
0 le phi_1 le pi\\
0 le phi_2 2pi
end{eqnarray}
それぞれについて積分すると体積になる。
begin{eqnarray}
int_{0}^{2pi} Biggl( int_{0}^{pi} Bigl( int_{0}^{1} U(r,phi_1,phi_2)r^2 sin(phi_1) dr Bigr) d phi_1 Biggr) dphi_2
end{eqnarray}
つまり以下。
begin{eqnarray}
int U(x,y,z) dV = int_{0}^{2pi} Biggl( int_{0}^{pi} Bigl( int_{0}^{1} U(r,phi_1,phi_2)r^2 sin(phi_1) dr Bigr) d phi_1 Biggr) dphi_2
end{eqnarray}
ここで( U(r,phi_1,phi_2) =1 )として積分範囲を(r)とすると球の体積の公式になる。
begin{eqnarray}
int U(x,y,z) dV &=& int_{0}^{2pi} Biggl( int_{0}^{pi} Bigl( int_{0}^{r} r^2 sin(phi_1) dr Bigr) d phi_1 Biggr) dphi_2 \\
&=& int_{0}^{2pi} int_{0}^{pi} Bigl( int_{0}^{r} frac{sin(phi_1)}{3} bigl[ r^3 bigr]_{0}^{r} Bigr) dphi_1 dphi_2 \\
&=& int_{0}^{2pi} int_{0}^{pi} frac{r^3 sin(phi_1)}{3} dphi_1 dphi_2 \\
&=& int_{0}^{2pi} -frac{r^3}{3} bigl[ cos(phi_1) bigr]_{0}^{pi} dphi_2 \\
&=& int_{0}^{2pi} frac{2r^3}{3} dphi_2 \\
&=& frac{2r^3}{3} bigl[ phi_2bigr]_{0}^{2pi} \\
&=& frac{4pi r^3}{3}
end{eqnarray}
次回、微小体積とヤコビアンが等しい理由を書いてみます。